Home [Statistics] GWR vs OLS
Post
Cancel

[Statistics] GWR vs OLS

Paper Review : Spatial Regression and Correlation

date : 2022.12.09

presenter : Woojeong Park


목표

  • OLS, GWR 이해
  • 각각의 장점 및 단점
  • statistics

OLS

OLS 개념

  • Ordinary Least Squares, 전통적 회귀분석으로 여겨짐
  • observations 간의 독립성오차 동분산성(homoscedasticity)를 가정
    • 표집 위치에 상관없이 관찰들은 서로 독립적이어야 하고, 종속변수의 관찰값과 추정값의 차이인 오차(errors)가 상호 독립적이며 분산이 일정한 것으로 가정한다.
    • 공간적으로 근접한 위치에 표집 된 사례일수록 유사한 값을 가지는 경향이 있기 때문에 현실적으로 이러한 가정이 충족되기는 어려움

OLS mathematical background

\(\begin{align*} y_i = \beta_0 + \sum_{j=1}^p X_{ij} \beta_j + \epsilon_i \end{align*}\) Where \(\begin{align*} \beta_0 &= \text{ Intercept coefficient}\\ \beta_j &= \text{ Solpe Coefficient for the $j$th independent variable $X_j$} \\ \epsilon_i &= \text{ Random error term with N(0, $\sigma^2I$)} \\ I &= n \times n \text{ identity matrix} \end{align*}\) —

OLS mathematical background

In the matrix notation \(Y = X \beta + \epsilon\)

The least square estimate of $\beta$ is \(\hat{\beta} = (X^T X)^{-1} X^T y\) —

OLS mathematical background

ANOVA can be performed to check whether the regression model is statistically significant or not(F-value and corresponding p-value).

T-test(p-value) for eaach parameter estimates can be perforemd to see whether they are statistically significant or not.

\[T = \frac{\hat{\beta}}{s / \sqrt{s_{xx}}}\]

Where \(\begin{align*} \hat{\beta} &= \frac{s_{xy}}{s_{xx}} \\ s_{xy} &= \sum (x-\bar{x})(y-\bar{y}) \\ s_{xx} &= \sum (x-\bar{x})^2 \end{align*}\) —

OLS mathematical background

Coefficient of determination can be calculated to see how well the model is successful at explaining variability as \(R^2 = \frac{S_{xy}^2}{S_{xx}S_{yy}}\)


OLS mathematical background

To check normality assumption, Shairo-Wilk test can be performed \(W = \frac{\left( \sum_{i=1}^n a_i x_{(i)} \right)^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\) Where \(\begin{align*} x_{(i)} &= \text{ Ordered sample values($x_{(1)}$ is the smallest)} \\ a_i &= \text{ constants generated from the means, variances and covariances of the order statistics of a sample of size $n$ from a normal distribution.} \end{align*}\)

Shairo-Wilk test tests the null hypothesis that a sample $x_1, \cdots, x_n$ came from a normally distributed population. The test rejects the null hypothesis if $W$ is too small.

  • 귀무가설 : residual은 정규분포와 같다.

    또다른 normality assumption test 방안

    Jarque-Bera test can be also performed for testing the normality assumption. \(JB = \frac{n}{6} \left( S^2 + \frac{K^2}{4}\right)\) Where \(\begin{align*} S &= \text{Skewness} \\ K &= \text{Kurtosis} \\ n &= \text{number of observations} \end{align*}\)

이는 카이제곱분포를 따르고, 위의 경우과 같은 귀무가설을 테스트한다.


공간적 등분산성 검정

The Breusch-Pagan test on random coefficients and White test on specification robust can be performed to check the presence of spatial heteroscedasticity (i.e. spatial non-stationarity).


공간적 등분산성 검정 : Breusch-Pagan Test

  • Breusch-Pagan Test : whether the estimated variance of the residuals from a regression depend on the values of the independent variables or not.
  • \[\begin{align*} \text{regression : } Y_i = \alpha + \beta X_i + \epsilon_i \\ \text{auxiliary regression : } Z_i^2 = \phi + \delta X_i + \nu_i \end{align*}\]

Where \(\begin{align*} &i \in \{1, 2,\cdots, N\} \\ &\mathbb{E}(\epsilon_i) = 0 \\ &S^2 = \sum \hat{u_i}^2 / N \\ &Z_i^2 = \sum \hat{u_i}^2 / S^2 \\ &\hat{u_i} = \text{residuals} \end{align*}\) —

공간적 등분산성 검정 : Breusch-Pagan Test

  • Step 1 : Apply OLS in the model
  • Step 2 : Compute the regression residuals ${\displaystyle {\hat {u}}_{i}}^2$ and divide by the Maximum Likelihood estimate of the error variance from the Step 1 regression to obtain $S^2, Z_i^2$
  • Step 3 : Estimate the auxiliary regression(여기서의 $X_i$는 origin regression의 $X_i$와 달라도 됨)
  • Step 4 : 검정통계량 $LM$ 계산 \(LM = \frac{1}{2} (TSS - TRR)\) Where where TSS is the sum of squared deviations of the $Z_i^2$ from their mean of 1, and SSR is the sum of squared residuals from the auxiliary regression.

공간적 등분산성 검정 : Breusch-Pagan Test

검정통계량은 freedom = $p-1$인 $\chi^2$ 분포를 따른다.($p$ is the number of estimated parameters in the auxiliary regression.) \(LM = \frac{1}{2} (TSS - TRR) \sim {\displaystyle \chi _{p-1}^{2}}\)


공간적 등분산성 검정 : Breusch-Pagan Test

The testable hypothesis are expressed as follows: \(\begin{align*} &H_0 : \delta = 0 \text{ (homoscedastic error variance)} \\ &H_a : \delta \neq 0 \text{ (homoscedastic error variance)} \end{align*}\)

  • If the test statistic has a p-value below an appropriate threshold (e.g. p < 0.05) then the null hypothesis of homoskedasticity is rejected and heteroskedasticity assumed.
  • $\delta=0$이면, 즉 귀무가설 성립 시 empirical error variance는 상수텀이고, 대립가설이 참이면 empirical error variance는 $X$ variable에 대한 함수라고 해석할 수 있다.

공간적 등분산성 검정 : White Test

  • Breusch-Pagan : detect only linear forms of heteroskedasticity
  • White : The residuals are computed from the original model and an empirical measure for the error variances is constructed by squaring them. \(\begin{align*} &\text{regression : }Y_i = \alpha + \beta_i X + \beta_2 W + \epsilon_i \\ &\text{auxiliary regression : } \hat{u_i}^2 = \phi + \delta_1 X_i + \delta_2 W_i + \delta_3 X_2 + \delta_4 W_2 + \delta_5 X_i \times W_i + \nu_i \end{align*}\)
  • 검정통계량은 Lagrange multiplier (LM) test statistic을 이용(단, $p$ is the number of estimated parameters in the auxiliary regression.) \(LM = n R^2 \sim {\displaystyle \chi _{p-1}^{2}}\) —

    공간적 등분산성 검정 : White Test

  • Step 1 : the squared residuals from the original model serve as a proxy for the variance of the error term at each observation.(residual ~ normality 가정)
  • Step 2 : The independent variables in the auxiliary regression account for the possibility that the error variance depends on the values of the original regressors in some way (linear or quadratic)
  • Step 3 : If the error term in the original model is in fact homoskedastic (has a constant variance) then the coefficients in the auxiliary regression (besides the constant) should be statistically indistinguishable from zero and the R2 should be “small”.

공간적 등분산성 검정 : White Test

The testable hypotheses are expressed as follows: \(\begin{align*} H_0 : \delta = 0 \text{ (homoscedastic error variance)} \\ H_a : \delta \neq 0 \text{ (homoscedastic error variance)} \end{align*}\) White test는 등분산성, 이분산성 하에서 least square estimator의 표본분산을 비교한다. 귀무가설이 참이라면, variance에서 발생하는 차이들은 sampling에 의한 오차이지, 근본적 차이에 의한 오차가 아니라고 볼 수 있다.


GWR

GWR 개념

  • GWR is an extended version of traditional OLS regression
  • global만 집중하는 OLS에 비해 local reality 반영 위해 GWR 사용

    GWR mathematical background

    회귀식은 아래와 같이 표현가능하다.

\(y_i(\mu) = \beta_{0i}(\mu) + \beta_{1i}(\mu)x_{1i}+ \cdots + \beta_{mi}(\mu)x_{mi} + \epsilon_i(\mu)\)

  • $\mu$ : 위치
  • $y$ : 종속변수
  • $m$ : 독립변수 $x$의 개수
  • $\beta$ : 회귀계수
  • $\epsilon$ : 오차항
  • $i \in {1, 2, \cdots, n }$ : 관측 인덱스

    GWR mathematical background

    위치정보 $\mu = (u_i, v_i)$ : set of location co-ordinates of $i$-th point over space. 를 반영하여 다시 쓰면

\(y_i = \beta_0 (u_i, v_i) + \sum_{j=1}^p X_{ij}\beta_j (u_i, v_i) + \epsilon_i\) Where \(\begin{align*} \beta_k(u_i, v_i) &= \text{ Continuous function of the location $(u_i, v_i)$ at point $i$} \\ \epsilon_i &= \text{ Random error term with $N(0, \sigma^2 I)$} \end{align*}\)

In matrix notation, \(Y = \beta \bigotimes X + \epsilon\) Where $\bigotimes$ means componentwise-multiplication.


GWR mathematical background

The matrix $\beta$ consists of $n$ sets of local parameters, which is given as \(\beta = \begin{bmatrix} \beta_0 (u_1, v_1) & \beta_1(u_1, v_1) & \cdots & \beta_k (u_1, v_1) \\ \beta_0 (u_2, v_2) & \beta_1(u_2, v_2) & \cdots & \beta_k (u_2, v_2) \\ \cdots & \cdots & \cdots & \cdots \\ \beta_0 (u_n, v_n) & \beta_1(u_n, v_n) & \cdots & \beta_k (u_n, v_n) \\ \end{bmatrix}\)


GWR mathematical background

여기서 가중 최소자승법(Weighted Least Square Estimation)을 이용하자.

즉, $\mu=(u_i, v_i)$에 대하여 \(\epsilon(\mu) = y_i(\mu) - \beta_{0i}(\mu) + \beta_{1i}(\mu)x_{1i}+ \cdots + \beta_{mi}(\mu)x_{mi}\) 에 대하여 weight $W_i$를 생각하자.공간가중행렬 $W_i$는 $i$번째 관측값과 다른 모든 관측값을 반영하는 공간행렬로, $i$번째 관측값의 거리에 기초한 가중치 $d_i$를 포함하는 $n \times n$ 대각행렬이다.

\(W_i = \begin{bmatrix} w_{i1} & 0 & 0 & \cdots & 0 \\ 0 & w_{i2} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & w_{in} \\ \end{bmatrix}\) —

GWR mathematical background

\(\underset{\beta_{ij}, i \in \{1, \cdots,n \}, j\in\{1,\cdots,m\}}{\text{minimize }} \sum_{i=1}^m W_i \{\epsilon_i(\mu)\}^2\) 이를 달성하면 된다. 이는 각 $\beta_{ij}$에 대하여 미분하여 solution을 구하면 다음과 같이 표현된다. \(\begin{align*} \hat{\beta}_i = (\hat{\beta_{i0}},\hat{\beta_{i1}},\cdots,\hat{\beta_{im}})^T = (X^T W_i X)^{-1} (X^T W_i Y) \end{align*}\)

적당한 matrix calculation을 통해 다음을 얻는다.

\[(X^TWX) \hat{\beta} = X^T W Y\]

따라서 최종적인 회귀계수 추정식은 아래와 같이 얻어진다. \(\hat{\beta} = [X^TWX]^{-1} X^T W Y\) —

kernel selection

커널함수는 가중치를 만드는 대역폭이 고정되어 있는 고정방식(Fixed spatial kernel), 그리고 관측치 수에 따라 다른 대역폭을 사용하는 가변방식(adaptive spatial kernel) 이 있다. 주로 관측치가 조사지역에 규칙적으로 있으면 전자, 관측치 분포가 다양하면 후자를 쓴다. 확실치 않은 경우, 후자가 안전하다.

가중치행렬 $W$는 여러 커널함수중에 하나를 택할 수 있는데, 주로 Gaussian form을 많이 쓴다. \(\begin{align*} &w_i(\mu) = \exp (-\frac{1}{2} \left(\frac{d_i(\mu)}{h}\right)^2) \\ &w_i(\mu) \text{ : 공간좌표에서 관측치 $i$에 대한 가중치} \\ &d_i(\mu) : \text{ : 관측치 $i$와 공간좌표 $\mu$간의 거리} \\ &h \text{ : 대역폭} \end{align*}\) —

kernel selection : bandwidth $h$

이 값은 대역폭 $h$가 커질수록 동일한 거리에 대한 가중치가 1로 계산되고, 이 경우 OLS와 같은 결과를 지닌다. 반면, 대역폭이 작아지면 가중치는 0으로 계산될 것이다.

GWR의 대역폭은 smoothing function 기능을 한다.

  • high bandwidth : over-smoothed model, producing parameters with too little vairation across space
  • low bandwidth : under-smoothed model, greater variation in model parameters over space than what is realistic.

대역폭 $h$의 선택

적정 대역폭 설정하기 위해서 AIC(Akaike Information Criterion) 또는 CV(Cross Validation) 가 사용된다. 관찰값과 추정값의 차이 및 모형의 복합성을 고려하는 AIC가 더 많이 선호된다.

bandwidth value의 선택방법은 3가지가 존재한다.


대역폭 $h$의 선택 1

First : selected based on existing knowledge. With a very large data set, bandwidth selection can be made using the desired percentage of the sample points to save time or otherwise can used all data.


대역폭 $h$의 선택 2

The second method of bandwidth selection in GWR requires no prior knowledge, and estimates bandwidth through a cross-validation technique which minimizes the squared error as \(z = \sum_i [y_i - y_{\neq 1}(h)]^2\) Where \(y_{\neq 1}(h) = \text{ Fitted value of $y_i$ with observation for location i omitted from the estimation process}\) This technique is only possible when the regression point locations are the same as the data point locations.


대역폭 $h$의 선택 3

The third method for bandwidth selection in GWR employs a technique which minimizes Akaike Information Criterion (AIC) for fitting the best regression model as \(AIC_c = 2n \log_e(\hat{\sigma}) + n \log_e(2 \pi) + n \times \frac{n+tr(S)}{n-2-tr(S)}\) Where \(\begin{align*} &n = \text{Sample size} \\ &\hat{\sigma} = \text{Estimated standard deviation of the error term} \\ &c = \text{subscript for corrected AIC estimate} \end{align*}\)

  • lower AIC : reality에 가까운 model

Auto Correlation

  • 과거과 미래에 영향을 주는 정도

Auto Correlation 측정법

  • 측정법 : Moran I statistics 잔차의 공간적 자기상관성 측정 위해 가장 많이 쓰이는 지표

\(I = \frac{n \sum_{i=1}^n \sum_{j=1}^n w_{ij} (y_i-\bar{y})(y_j-\bar{y})}{\sum_{i=1}^n \sum_{j=1}^n w_{ij} \times \sum_{i=1}^n (y_i-\bar{y})^2}\)

  • $n$ : 지역단위 수
  • $\bar{y}$ : 종속변수 $y$의 평균
  • $w_{ij}$ : $(i,j)$ 지점의 공간가중행렬

Moran I 지수 지역간의 인접성을 나타내는 공간가중행렬과 인접하는 지역들 간의 속성데이터 유사성을 측정하는 것!


Auto Correlation 측정법 : Moran I 해석

Similarity between observations for a given variables as a function of spatial distance가 측정된다. \(I = \frac{\sum_i^n \sum_j^n W_{ij} (y_i-\bar{y})(y_j-\bar{y})}{S^2 \sum_i^n \sum_j^n W_{ij}}\)

  • $I>0$ : 특정 거리만큼 떨어진 observation들이 비슷하다고 여겨질 때 나옴
  • $I<0$ : 특정 거리만큼 떨어진 observation들이 비슷하지 않다고 여겨질 때 나옴
  • $I=0$ : 랜덤하게 + 독립적으로 관측값들이 뿌려져 있음

    Auto Correlation 측정법 : Moran I

    $I$를 통해서 검정통계량 $Z$ 생성가능 \(Z = \frac{I - \mathbb{E}[I]}{S_\epsilon (I)}\)

  • $\mathbb{E}[I], S_\epsilon(I)$ : 통계량 $I$의 평균과 표준편차
  • $Z=1$이다 == 유사한 값 가진 지역들이 인접하는 경향이 강함
  • $Z=-1$이다 == 큰 값과 작은값 가진 지역들이 골고루 인접함
  • 이렇듯, 큰 값들과 작은 값들이 공간적으로 밀집해 있는 경우 모두 동일하게 자기상관도가 크게 산출된다.

Auto Correlation 측정법 : Moran I

Moran I 지수의 통계적 유의성 검정을 통해 공간적 자기상관을 판정하여 공간적 자기상관이 존재한다면 지리가중회귀분석(GWR)으로 모형을 추정한다.

공간적 자기상관이 없는 것으로 판정되면 단순회귀분석(OLS)으로 모형을 추정하는 것이 가능하다.


Spatial Autoregression

Autocorrelation를 regression modelling process에 추가하여 spatial autoregression을 고려해보자. 이는

  • additional regressor in the form of spatially lagged dependent variable
  • error structure 들을 추가하여 구현가능하다. \(y = \rho Wy + X\beta + \epsilon_i\) Where \(\begin{align*} &y = \text{$n$ by 1 vector of observations on the dependent variable} \\ &W = \text{$n$ by $n$ spatial weights matrix that formalizes} \\ &\rho = \text{spatial autoregressive parameter} \\ &X = \text{$n$ by $k$ matrix of observations on the exgenous variables with an associated $k$ by 1 regression coefficient vector $\beta$} \\ &\epsilon = \text{a vector or random error terms} \end{align*}\) —

    Spatial Autoregression

    The log-likelihood for the spatial autoregression can be estimated by \(\ln L = -\frac{1}{2 \sigma^2} (y-\rho Wy-X\beta)^T(y- \rho Wy - X\beta)\) The least square estimator and variance for spatial autoregression can be estimated by \(\begin{align*} &\hat{\beta}_{ML} = (X^TX)^{-1} X^T (y-\lambda Wy) \\ &\hat{\sigma}_{ML} = (e_o - \rho e_L)^T(e_o - \rho e_L)/N \end{align*}\) Where \(\begin{align*} e_o = y-X\hat{\beta}_o \\ e_L = y-X\hat{\beta}_L \end{align*}\) —

Spatial Autoregression

  • Spatial autoregression model을 위해서 Likelihood Ratio Test 가 시행될 수 있다.
  • which corresponds to twice the difference between the log likelihood in this model and the log- likelihood in the standard regression model with the same independent variables with l equaling zero.
  • 이는 $\chi^2_1$ distributed with one degree of freedom으로 시행된다.

Spatial autoregression 관찰

Spatial autoregression를 보기 위해 Lagrange Multiplier-Lag statisticsRobust Lagrange Multiplier-Lag statistics 를 생각해볼 수 있다.

\(LM_{Lag} = \frac{(e^TWy / s^2)^2}{(WX\beta^T)M(WX\beta) / s^2 + tr(W^TW + W^2)}\) Where \(\begin{align*} &M = I - X(X^TX)^{-1}X' \\ &y = \text{vector containing the dependent variable} \\ &e = \text{vector of OLS residuals} \\ &W = \text{spatial weights matrix} \\ &s^2 = e^Te / N \text{(ML estimate for residual variance)}\\ &\beta = \text{vector of OLS estimates} \end{align*}\) The Lagrange Multiplier lag Test($LM_{Lag}$)는 $\chi^2_1$ distribution을 갖는다.


Spatial Autoregression(SAR) : OLS의 한계

  • Spatial autocorrelation : 가까이 위치한 관측치들의 lack of independence
  • OLS는 관측치들의 independence를 가정하기 때문에 the presence of spatial autocorrelation in a dataset is troublesome for OLS regression
  • This premise has been the foundation for a new regression technique called geographically weighted regression (GWR) to capture both spatial dependency and spatial non-stationarity in the modeling process.

  • non-stationarity test

    The aim of a non-stationarity test is to examine whether the local variations as generated by GWR are significantly different over space.(차이가 있어야 GWR 사용한 것이 의미가 있음.)

  • 원래는 time series analysis에서 사용되는 것
  • 시간(공간)이 변해도 분포가 일정한가?에 대한 test
    • stationarity test : 시간(공간)이 변해도 분포 일정
    • Non-stationarity test : 시간(공간)이 변해도 분포 일정 X

non-stationarity test 1

  • First method : comparing the range of the local parameter estimates with a confidence interval around the OLS estimate of the equivalent parameter.
    • The parameter is considered to be nonstationary if the interquartile range of GWR estimates is greater than ±1 standard deviation of the same global parameter

non-stationarity test 2

  • Second method : Monto Carlo test, which uses a pseudo-random number generator to relocate the observations across the space.

non-stationarity test 3

  • Third method : Leung’s parameter variation test
    • The F-test for checking improvement of GWR over OLS

\(F = \frac{RSS_0 / \nu_0}{RSS_w / \nu_w}\) Where \(\begin{align*} RSS_0 = \text{Residual sum of squares for OLS} \\ RSS_w = \text{Residual sum of squares for GWR} \\ \nu_0 = \text{Degree of freedoms for OLS} \\ \nu_w = \text{Degree of freedoms for GWR} \end{align*}\)


GWR provides four important diagnostics statistics

GWR provides four important diagnostics statistics at each point, which helps to understand information locally.

  1. standardized residuals
    • Residual : difference between the calculated value of $Y$ and the actual observed value of $Y$
    • Standardized residuals values greater than ±3 are unusual observations and thus should be examined carefully
    • Standardized residuals is calculated as residuals divided by standard error of the residuals. \(r_i = \frac{e_i}{\sqrt{MS_{ReS0}}} (i \in \{1, 2, \cdots, n\})\)

GWR provides four important diagnostics statistics

  1. local variations of the $R^2$ statistics
    • regression point 근처를 잘 반영하고 있는가?
    • These values should be interpreted very carefully because the model calibrated at one location may not be suitable to replicate the data at other locations.
    • local $R^2$ statistics are calculated as \(r_i^2 = \frac{TSS_w - RSS_w}{TSS_w}\) Where \(\begin{align*} TSS_w = \sum_j W_{ij} (y_i-\bar{y})^2 \text{ (Geographically weighted total sum of squares)}\\ RSS_w = \sum_j w_{ij} (y_i-\bar{y})^2 \text{ (Geographically weighted residual sum of squares)} \\ w_{ij} = \text{ Weight of data point $j$ at regrssion point $i$} \end{align*}\)

GWR provides four important diagnostics statistics

  1. leverage values
    • measure the influence of an observation on the model calibration.
    • high value : 특정 관측치가 $X$ observation의 중심과 멀다.
    • If leverage values exceed \(2p/n = \text{(number of variables devided by number of observations)}\) , then it is considered as cut off points for leverage.
    • The leverage of an observation at $x_i$ of the $X$ matrix can be written as \(h_{ii} = x_i (X^TX)^{-1}x_i^T\)
    • $h_{ii}$ is the ${\displaystyle {i}^{th}}$ diagonal element of the ortho-projection matrix (a.k.a hat matrix) \(\mathbf {H} =\mathbf {X} \left(\mathbf {X} ^{\top }\mathbf {X} \right)^{-1}\mathbf {X} ^{\top}\) —

      GWR provides four important diagnostics statistics

  2. Cook’s Distance
    • another indication of the influence of an observation
    • high value : 관측치가 influential하다
    • 1보다 크다 == large studentized residual 가진다.
    • Cook's Distance can be calculated as \(D_i = \frac{r_i^2}{p} \times \left( \frac{h_{ii}}{1-h_{ii}}\right)\) Where \(\begin{align*} r_i = \text{Studentized residual}\\ h_{ii} = \text{Leverage} \\ p = \text{number of variables} \end{align*}\) —

      비교

      center


Total algorithm

center


Application

  • https://rpubs.com/zirumo07/463009
  • https://www.emilyburchfield.org/courses/gsa/spatial_regression_lab

    Reference

  • 지리적 가중회귀모형을 이용한 지역별 심정지 발생요인에 관한 연구
  • 공간 자료를 이용한 대기오염이 순환기계 건강에 미치는 영향 분석
  • Comparison of Ordinary Least Square Regression, Spatial Autoregression, and Geographically Weighted Regression for Modeling Forest Structural Attributes Using a Geographical Information System (GIS)/Remote Sensing (RS) Approach
  • Lee, S.-I. Correlation and Spatial Autocorrelation. In Encyclopedia of GIS; Shekhar, S., Xiong, H., Zhou, X., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–8.
  • Ren, T.; Long, Z.; Zhang, R.; Chen, Q. Moran’s I test of spatial panel data model—Based on bootstrap method. Econ. Model. 2014, 41, 9–14.
This post is licensed under CC BY 4.0 by the author.